Suppression of Machining Fluid Misting by Polymer Additives

Charles W. Manke, Esin Gulari, and Joseph M. Smolinski

Dept. Chemical Engineering and Materials Science Wayne State University Detroit, MI 48202

Support is gratefully acknowledged from: NSF DMI-9525105, Ford, General Motors, Daimler-Chrysler/UAW, USCAR.

Machining Fluids for Metalworking

Function: Cool and lubricate working surfaces, remove metal chips.

Metalworking Processes: Milling, gun-drilling, grinding, etc.

Fluid Types:

Straight Oil *light mineral oils (~20 cp)*

Water-Based oil-in-water emulsions

Misting Problem: Machining fluids break up in high speed machining under impact, shearing, and centrifugal force. Droplets < 5 mm are easily entrained in air, leading to worker exposure via inhalation.

Influence of Polymers on Atomization

Particle Sizing and Size Distributions

$$R = 1 - \exp\left[-\left(\frac{d}{X}\right)^{N}\right]$$

$$W = \frac{\partial R}{\partial d}$$

Extensional Viscosity Measurements and its Relationship to Atomization

Opposing Jet Rheometer

$$Stress = \frac{Measured\ Force}{Nozzle\ Area}$$

$$Strain\ Rate \approx \frac{Flow\ Rate}{Nozzle\ Area \times \frac{1}{2}Gap}$$

$$h_{E} \approx \frac{Stress}{Strain\ Rate}$$

Oil Mist Suppress using Polyisobutylene in Plant Testing

12:30:00

13:30:00

0.000

11:30:00

⇒70 ppm of PIB add to machining oil

⇒ 40% reduction in average mist levels

⇒67% reduction in peek mist levels

⇒24 hours plus service life

Use of High-M Polymers for Antimisting Treatment of Machining Fluids in Automotive Industry

Straight Oils

Polymer: 20-50 ppm polyisobutylene ($M=1-2x10^6$)

Replenishment schedule: daily-weekly

Status: worldwide implementation by Ford, and others.

Water-based Fluids

Polymer: up to 500 ppm polyethylene oxide $(M-1-2x10^6)$

Replenishment schedule: daily

Status: plant-tested but not widely implemented.

Challenge: Improve economics of treatment for water-based fluids by reducing mechanical degradation and/or reducing treatment concentrations.

Associative Chemistry: Polymer-surfactant and polymer-polymer interactions.

Effect of PEO and Surfactant on Drop Size Distribution

PEO (MW = 2,000,000) : 0.5 g/l Petroleum sulfonate:20 g/l

Effect of PEO and Surfactant on Solution Elasticity

PEO (MW = 2,000,000): 0.5 g/l Petroleum sulfonate: 20 g/l

Plant Testing of Polyethylene Oxide as a Mist Suppressant at a Detroit Daimler-Chrysler Facility

Layout of Plant Test

- Aerosol measured by TSI DustTrak and RAM-1 units, at a grid resolution of 15 ft by 15 ft covering an area of 240 ft by 90 ft.
- •Two 40,000 gallon soluble oil systems treated with 150 ppm of PEO added as a slurry.

Storage Area

Mist Suppression with PEO

Plant Testing of Polyethylene Oxide as a Mist Suppressant at a Detroit Daimler-Chrysler Facility

Layout of Plant Test

- Aerosol measured by TSI DustTrak and RAM-1 units, at a grid resolution of 15 ft by 15 ft covering an area of 240 ft by 90 ft.
- •Two 40,000 gallon soluble oil systems treated with 150 ppm of PEO added as a slurry.

Storage Area

Mist Suppression with PEO

EFFECT OF PEO CONCENTRATION ON DROP SIZE

Conclusions

Polymer additives are very effective in reducing machining fluid mist.

Economic barriers remain for treatment of water-based fluids:

high treatment levels (up to 500 ppm) mechanical degradation of polymer (daily replenishment) higher cost of water-soluble polymers

PEO-surfactant interactions greatly improve antimisting effectiveness in laboratory and plant tests - reduces treatment to 150 ppm.

Further improvements are expected through optimization of polymersurfactant interactions and synthesis of "designer" antimisting systems.